一、Spark用于处理大数据 到目前为止,我们一直在谈论存储和组织数据。但是,如果你想实际处理数据又怎么样?这时候,你就需要一种像Spark这样的分析和处理引擎。Spark是另一个Apache项目,它包括一批开源和商业产品,拿来你添加到数据湖、仓库和数据库的数据后,对数据做一些有用的操作。由于它可以访问你能想象的任何数据的库,Spark可用于处理存储在各种地方的各种数据。它同样是开源的,所以你可以随意修改它。二、你可以对大数据执行SQL操作 许多人知道如何构建SQL数据库和编写SQL查询。面对大数据时,这种专长没有必要浪费。Presto是一种开源SQL查询引擎,它让数据科学家可以使用SQL查询,查询驻留在从Hive到专有商业数据库管理系统的任何环境的数据库。它被Facebook之类的大公司用于交互式查询,而交互式查询这个短语是关键。Presto就好比是一种对庞大数据集执行即席交互式查询的工具。三、在线存储有一席之地 一些大数据任务需要用到不断变化的数据。有时候,这是定期添加的数据,有时是通过分析而更改的数据。不管在什么情况下,如果你的数据写入与读取一样频繁,那么你就需要该数据存储在本地、联机。如果你支付得起成本,还希望数据存储在固态存储介质上,因为这会大大加快速度――如果你在零售或交易场地的人员焦急地等待结果返回,这是个重要的考虑因素。四、云存储也有一席之地 如果在更庞大的聚合数据库(sz.jzfbj.com)上进行分析,那么云是完美的平台。聚合数据并传输到云,运行分析,然后拆掉实例。这正是云最擅长的那种弹需求响应。操作不会受到互联网可能带来的任何延迟问题的显著影响。如果你把在专用本地系统上进行的实时分析与云端运行的深度分析结合起来,那么离充分发挥大数据基础设施的潜力近在咫尺。
转载请注明来自夕逆IT,本文标题:《excel如何利用生日算年龄》
还没有评论,来说两句吧...